您好、欢迎来到现金彩票网!
当前位置:秒速快三预测 > 数字 >

完美数字

发布时间:2019-08-16 05:55 来源:未知 编辑:admin

  如果一个自然数等于其自身所有能够被其整除的被除数之和,那它就是一个完全数,当然这个和数因子中不包括其本身在内。

  古希腊人在公元2世纪末发现了6、28、496、8128四个完全数。(完全数是被古人视为十分吉祥的数字。)

  从第四个完全数到第七个完全数的发现经过了一千多年。直到今天,人们发现的完全数总共才有37个。

  若一个自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身,这种数叫做完全数。

  对于“4”这个数,它的线本身比其真因子之和要大,这样的数叫做亏数。对于“12”这个数,它的线本身比其真因子之和要小,这样的数就叫做盈数。那么有没有既不盈余,又不亏欠的数呢?即等于它自己的所有真因子之和的数,这样的数就叫做完全数。

  公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数。毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”不过,或许印度人和希伯来人早就知道它们的存在了。有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数。圣·奥古斯丁说:6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完数,所以上帝在六天之内把一切事物都造好了,即使没有上帝创造世界这种事,6仍旧不失其为完数。

  完全数诞生后,吸引着众多数学家与业余爱好者像淘金一样去寻找。它很久以来就一直对数学家和业余爱好者有着一种特别的吸引力,他们没完没了地找寻这一类数字。接下去的两个完数看来是公元1世纪,毕达哥拉斯学派成员尼克马修斯发现的,他在其《数论》一书中有一段话如下:也许是这样:正如美的、卓绝的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;是以盈数和亏数非常之多,杂乱无章,它们的发现也毫无系统。但是完全数则易于计数,而且又顺理成章:因为在个位数里只有一个6;十位数里也只有一个28;第三个在百位数的深处,是496;第四个却在千位数的尾巴上,接近一万,是8128。它们具有一致的特性:尾数都是6或8,而且永远是偶数。第五个完全数要大得多,是33550336,它的寻求之路也艰难得多,直到十五世纪才由一位无名氏给出。这一寻找完全数的努力从来没有停止。电子计算机问世后,人们借助这一有力的工具继续探索。笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完美人亦非易事。”时至今日,人们一直没有发现有奇完全数的存在。于是是否存在奇完全数成为数论中的一大难题。目前,只知道即便有,这个数也是非常之大,并且需要满足一系列苛刻的条件。

  ⑴到底有多少完全数?寻找完全数并不是容易的事。经过不少数学家研究,到目前为止,一共找到了46个完全数。

  ⑵有没有奇完全数?奇怪的是,已发现的46个完全数都是偶数,会不会有奇完全数存在呢?如果存在,它必须大于10^300。

  尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p + 1或36p + 9的形式,其中p是素数。在10^18以下的自然数中奇完全数是不存在的。

  当2^p-1是质数的时候,称其为梅森素数!顾名思义,就是梅森第一个系统地研究这种形式的素数的!事实上,至今,人类只发现了46个梅森素数,也就是只发现了46个完全数。

  由完全数公式可知,完全数和梅森素数存在对应关系,因此列出梅森素数表,就可以得出完全数表。

http://t-winkler.net/shuzi/881.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有